Countdown header img desk

MAI SUNT 00:00:00:00

MAI SUNT

X

Countdown header img  mob

MAI SUNT 00:00:00:00

MAI SUNT

X

Applied Missing Data Analysis

De (autor): Craig K. Enders

Applied Missing Data Analysis - Craig K. Enders

Applied Missing Data Analysis

De (autor): Craig K. Enders


The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website (www.appliedmissingdata.com) includes datasets and analysis examples from the book, up-to-date software information, and other resources.

New to This Edition
*Expanded coverage of Bayesian estimation, including a new chapter on incomplete categorical variables.
*New chapters on factored regressions, model-based imputation strategies, multilevel missing data-handling methods, missing not at random analyses, and other timely topics.
*Presents cutting-edge methods developed since the 2010 first edition; includes dozens of new data analysis examples.
*Most of the book is entirely new.

Citește mai mult

-10%

transport gratuit

PRP: 634.58 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

571.12Lei

571.12Lei

634.58 Lei

Primești 571 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Indisponibil

Descrierea produsului


The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website (www.appliedmissingdata.com) includes datasets and analysis examples from the book, up-to-date software information, and other resources.

New to This Edition
*Expanded coverage of Bayesian estimation, including a new chapter on incomplete categorical variables.
*New chapters on factored regressions, model-based imputation strategies, multilevel missing data-handling methods, missing not at random analyses, and other timely topics.
*Presents cutting-edge methods developed since the 2010 first edition; includes dozens of new data analysis examples.
*Most of the book is entirely new.

Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo