Joint Models for Longitudinal and Time-To-Event Data: With Applications in R

De (autor): Dimitris Rizopoulos

Joint Models for Longitudinal and Time-To-Event Data: With Applications in R - Dimitris Rizopoulos

Joint Models for Longitudinal and Time-To-Event Data: With Applications in R

De (autor): Dimitris Rizopoulos


In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models.

All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author.


All the R code used in the book is available at:

http: //jmr.r-forge.r-project.org/

Citește mai mult

-10%

transport gratuit

PRP: 441.50 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

397.35Lei

397.35Lei

441.50 Lei

Primești 397 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Descrierea produsului


In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models.

All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author.


All the R code used in the book is available at:

http: //jmr.r-forge.r-project.org/

Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Ma abonez image one
Ma abonez image one
Accessibility Logo

Salut! Te pot ajuta?

X