headerdesktop laponiatimer12noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile laponiatimer12noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎁Vacanță CADOU în Laponia

Acasă la Moș Crăciun

Comandă și câștigă

Valabilitate: 11-12 noiembrie»»»

Statistical Optimal Transport: École d'Été de Probabilités de Saint-Flour XLIX - 2019

De (autor): Sinho Chewi

Statistical Optimal Transport: École d'Été de Probabilités de Saint-Flour XLIX - 2019 - Sinho Chewi

Statistical Optimal Transport: École d'Été de Probabilités de Saint-Flour XLIX - 2019

De (autor): Sinho Chewi

Sinho Chewi is an Assistant Professor of Statistics and Data Science at Yale University. He obtained his PhD in Mathematics and Statistics from the Massachusetts Institute of Technology in 2023, under the supervision of Philippe Rigollet. He works broadly on the mathematics of machine learning and statistics, with a focus on applications of optimal transport to computational problems arising in those fields. He is currently writing a book on log-concave sampling.

Jonathan Niles-Weed is an Associate Professor of Mathematics and Data Science at New York University. He studies mathematical statistics, the mathematics of data science, and applications of optimal transport in statistics, probability, and machine learning. He holds a PhD from the Massachusetts Institute of Technology and is the recipient of a Sloan Fellowship in Mathematics, an NSF CAREER award, the 2023 Tweedie New Researcher Award from the Institute for Mathematical Statistics, and the 2024 Early Career Prize from the SIAM Activity Group on Data Science.

Philippe Rigollet is the Cecil and Ida Green Distinguished Professor of Mathematics at MIT, where he serves as Chair of the Applied Mathematics Committee. He works at the intersection of statistics, machine learning, and optimization, focusing primarily on the design and analysis of efficient statistical methods. His current research is on statistical optimal transport and the mathematical theory behind transformers. His research has been recognized by the CAREER award from the National Science Foundation and a Best Paper Award at the Conference on Learning Theory in 2013 for his pioneering work on statistical-to-computational tradeoffs. He is an elected fellow of the Institute of Mathematical Statistics and gave a Medallion lecture at the Joint Statistical Meetings in 2021.

Citește mai mult

-10%

transport gratuit

PRP: 743.91 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

669.52Lei

669.52Lei

743.91 Lei

Primești 669 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Indisponibil

Plasează rapid comanda

Important icon msg

Poți comanda acest produs introducând numărul tău de telefon. În cel mai scurt timp vei fi apelat de un operator Libris pentru preluarea datelor necesare.

Completează mai jos numărul tău de telefon

Descrierea produsului

Sinho Chewi is an Assistant Professor of Statistics and Data Science at Yale University. He obtained his PhD in Mathematics and Statistics from the Massachusetts Institute of Technology in 2023, under the supervision of Philippe Rigollet. He works broadly on the mathematics of machine learning and statistics, with a focus on applications of optimal transport to computational problems arising in those fields. He is currently writing a book on log-concave sampling.

Jonathan Niles-Weed is an Associate Professor of Mathematics and Data Science at New York University. He studies mathematical statistics, the mathematics of data science, and applications of optimal transport in statistics, probability, and machine learning. He holds a PhD from the Massachusetts Institute of Technology and is the recipient of a Sloan Fellowship in Mathematics, an NSF CAREER award, the 2023 Tweedie New Researcher Award from the Institute for Mathematical Statistics, and the 2024 Early Career Prize from the SIAM Activity Group on Data Science.

Philippe Rigollet is the Cecil and Ida Green Distinguished Professor of Mathematics at MIT, where he serves as Chair of the Applied Mathematics Committee. He works at the intersection of statistics, machine learning, and optimization, focusing primarily on the design and analysis of efficient statistical methods. His current research is on statistical optimal transport and the mathematical theory behind transformers. His research has been recognized by the CAREER award from the National Science Foundation and a Best Paper Award at the Conference on Learning Theory in 2013 for his pioneering work on statistical-to-computational tradeoffs. He is an elected fellow of the Institute of Mathematical Statistics and gave a Medallion lecture at the Joint Statistical Meetings in 2021.

Citește mai mult

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Ma abonez image one
Ma abonez image one
Accessibility Logo

Salut! Te pot ajuta?

X