headerdesktop mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎁Târgul Ghetuțelor🎁

Cadouri de Moș Nicolae

-77%, -30%, -50%

Comandă aici!

Cuda for Engineers: An Introduction to High-Performance Parallel Computing

De (autor): Duane Storti

Cuda for Engineers: An Introduction to High-Performance Parallel Computing - Duane Storti

Cuda for Engineers: An Introduction to High-Performance Parallel Computing

De (autor): Duane Storti

CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago.

The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you'll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms.

Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it.

Coverage includes

  • Preparing your computer to run CUDA programs
  • Understanding CUDA's parallelism model and C extensions
  • Transferring data between CPU and GPU
  • Managing timing, profiling, error handling, and debugging
  • Creating 2D grids
  • Interoperating with OpenGL to provide real-time user interactivity
  • Performing basic simulations with differential equations
  • Using stencils to manage related computations across threads
  • Exploiting CUDA's shared memory capability to enhance performance
  • Interacting with 3D data: slicing, volume rendering, and ray casting
  • Using CUDA libraries
  • Finding more CUDA resources and code

Realistic example applications include

  • Visualizing functions in 2D and 3D
  • Solving differential equations while changing initial or boundary conditions
  • Viewing/processing images or image stacks
  • Computing inner products and centroids
  • Solving systems of linear algebraic equations
  • Monte-Carlo computations

Citește mai mult

-20%

transport gratuit

PRP: 261.22 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

208.98Lei

208.98Lei

261.22 Lei

Primești 208 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Plasează rapid comanda

Important icon msg

Poți comanda acest produs introducând numărul tău de telefon. În cel mai scurt timp vei fi apelat de un operator Libris pentru preluarea datelor necesare.

Completează mai jos numărul tău de telefon

Descrierea produsului

CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago.

The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you'll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms.

Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it.

Coverage includes

  • Preparing your computer to run CUDA programs
  • Understanding CUDA's parallelism model and C extensions
  • Transferring data between CPU and GPU
  • Managing timing, profiling, error handling, and debugging
  • Creating 2D grids
  • Interoperating with OpenGL to provide real-time user interactivity
  • Performing basic simulations with differential equations
  • Using stencils to manage related computations across threads
  • Exploiting CUDA's shared memory capability to enhance performance
  • Interacting with 3D data: slicing, volume rendering, and ray casting
  • Using CUDA libraries
  • Finding more CUDA resources and code

Realistic example applications include

  • Visualizing functions in 2D and 3D
  • Solving differential equations while changing initial or boundary conditions
  • Viewing/processing images or image stacks
  • Computing inner products and centroids
  • Solving systems of linear algebraic equations
  • Monte-Carlo computations

Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo

Salut! Te pot ajuta?

X